تشخیص بیماری صرع با استفاده از روشهای ابتکاری
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده مهندسی برق و کامپیوتر
- author محمدرضا اسماعیلی
- adviser حمید ظهیری
- Number of pages: First 15 pages
- publication year 1393
abstract
تشنج مهمترین علامت بیماری صرع بوده و آنالیز دقیق آن نیز از طریق انجام الکتروانسفالوگرافی(eeg) امکان پذیر است. به دلیل ماهیت این سیگنالها، مطالعه و تجزیه و تحلیل بصری آنها حتی برای یک نورولوژیست مجرب نیز مشکل است. به همین منظور روشهای مختلفی جهت تشخیص خودکار صرع بوسیله تحلیل سیگنال eeg ارائه شده است. در این تحقیق برآنیم تا مروری مختصر بر روشهای تشخیص و جداسازی سیگنالهای صرعی از سیگنالهای سالم و نرمال داشته باشیم. به دلیل خواص ناایستای سیگنال eeg، استفاده از روشهای غیر خطی نتایج بسیار بهتری را به دست میدهند. به طور مثال استفاده از تبدیل ویولت جهت استخراج ویژگیها، استفاده از الگوریتمهای ابتکاری جهت انتخاب ویژگیها و همچنین به کار بردن شبکه های عصبی جهت طبقه بندی سیگنالها، به امری مرسوم در این زمینه تبدیل شده است. در نهایت سیستمی را پیشنهاد میدهیم که بر پایه الگوریتم هوشمند ipo طراحی شده و توانایی بالایی در تشخیص صحیح صرع دارا میباشد.
similar resources
تشخیص صرع در سیگنال EEG با استفاده از الگوریتم ابتکاری صفحات شیبدار(IPO)
Epilepsy is a neurological disorder after stroke. About 1 percent of people in the world are involved with this second most common neurological disorder. Epilepsy can affect people of different ages with an altered behavior or lack of patient awareness and affect one's social life. In 75% of cases, if epilepsy is diagnosed early and properly, it can be treated. Among all existing methods of an...
full textشناسایی خودکار حالتهای مختلف بیماری صرع از سیگنال EEG با استفاده از شبکههای یادگیری عمیق
استفاده از روشی هوشمند برای تشخیص خودکار مراحل مختلف صرعی در کاربردهای پزشکی، برای کاهش حجم کار پزشکان در تجزیهوتحلیل دادههای صرع با بازرسی بصری، یکی از چالشهای مهم در سالهای اخیر محسوب میشود. یکی از مشکلات شناسایی خودکار مراحل مختلف صرعی، استخراج ویژگیهای مطلوب است؛ بهگونهای که این ویژگیها بتوانند بیشترین تمایز را بین مراحل مختلف صرعی ایجاد کنند. فرآیند یافتن ویژگیهای مناسب، عموماً ام...
full textتشخیص بیماری دیابت نوع2 با استفاده از درخت تصمیم C4.5
مقدمه: یکی از شایعترین بیماریها در دنیای امروز بیماری دیابت است و سالانه شیوع دیابت در سطح جهان حدود درصد افزایش مییابد. استفاده از تکنیکهای دادهکاوی برای ایجاد مدلهای پیشگویی کننده، جهت شناسایی افراد در معرض خطر برای کاهش عوارض ناشی از بیماری بسیار کمککننده است. در این پژوهش با استفاده از درخت تصمیم C4.5 به روشهای پیشگیری و تشخیص این بیماری پرداخته شد. روش: در این پژوهش کاربردی- توصی...
full textتشخیص بیماری دیابت نوع2 با استفاده از درخت تصمیم C4.5
مقدمه: یکی از شایعترین بیماریها در دنیای امروز بیماری دیابت است و سالانه شیوع دیابت در سطح جهان حدود درصد افزایش مییابد. استفاده از تکنیکهای دادهکاوی برای ایجاد مدلهای پیشگویی کننده، جهت شناسایی افراد در معرض خطر برای کاهش عوارض ناشی از بیماری بسیار کمککننده است. در این پژوهش با استفاده از درخت تصمیم C4.5 به روشهای پیشگیری و تشخیص این بیماری پرداخته شد. روش: در این پژوهش کاربردی- توصی...
full textتشخیص بیماری پریودنتال با استفاده از الگوریتم لونبرگ- مارکواردت
خلاصه: سابقه و هدف: بیماری پریودنتال، یکی از شایعترین بیماریهای عفونی دهان است. تشخیص صحیح و زودهنگام آن میتواند موجب کاهش میزان عوارض ناخوشایند گردد. هدف از این مطالعه بررسی دقت و کارایی شبکهی عصبی مصنوعی در تشخیص بیماری پریودنتال است. مواد و روشها: این مطالعهی تشخیصی، در بازهی زمانی سالهای 94 و 95 از بررسی پروندهی پزشکی 230 مراجعه کننده به بخش پریودانتیکس دانشکدهی دندانپزشکی زاهدان ...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده مهندسی برق و کامپیوتر
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023